@_Whitetigress I just figured there weren’t many arduino-interested people here, but here’s the whole code with comments.
#include <OneWire.h>
#include <LiquidCrystal.h>
OneWire ds(10);
LiquidCrystal lcd(6, 7, 5, 4, 3, 2);
float lasttemp; //Variable for last temperature
float delta; //Variable for temperaturechange
long previousMillis = 0;
long interval = 20000; //Check once every 20 seconds
void setup(void) {
pinMode(13, OUTPUT);
Serial.begin(115200);
lcd.begin(8, 2);
lcd.setCursor(0,0);
lcd.print(“STARTING”);
lcd.setCursor(0, 1);
lcd.print(“STARTING”);
delay(1000);
lcd.clear();
}
void loop(void) {
unsigned long currentMillis = millis();
byte i;
byte present = 0;
byte type_s;
byte data[12];
byte addr[8];
float celsius, fahrenheit;
if ( !ds.search(addr)) {
Serial.println(“No more addresses.”);
Serial.println();
ds.reset_search();
delay(250);
return;
}
Serial.print(“ROM =”);
for( i = 0; i < 8; i++) {
Serial.write(’ ’);
Serial.print(addr[i], HEX);
}
if (OneWire::crc8(addr, 7) != addr[7]) {
Serial.println(“CRC is not valid!”);
return;
}
Serial.println();
// the first ROM byte indicates which chip
switch (addr[0]) {
case 0×10:
Serial.println(” Chip = DS18S20”); // or old DS1820
type_s = 1;
break;
case 0×28:
Serial.println(” Chip = DS18B20”);
type_s = 0;
break;
case 0×22:
Serial.println(” Chip = DS1822”);
type_s = 0;
break;
default:
Serial.println(“Device is not a DS18×20 family device.”);
return;
}
ds.reset();
ds.select(addr);
ds.write(0×44, 1); // start conversion, with parasite power on at the end
delay(1000); // maybe 750ms is enough, maybe not
// we might do a ds.depower() here, but the reset will take care of it.
present = ds.reset();
ds.select(addr);
ds.write(0xBE); // Read Scratchpad
Serial.print(” Data = ”);
Serial.print(present, HEX);
Serial.print(” ”);
for ( i = 0; i < 9; i++) { // we need 9 bytes
data[i] = ds.read();
Serial.print(data[i], HEX);
Serial.print(” ”);
}
Serial.print(” CRC=”);
Serial.print(OneWire::crc8(data, 8), HEX);
Serial.println();
// Convert the data to actual temperature
// because the result is a 16 bit signed integer, it should
// be stored to an “int16_t” type, which is always 16 bits
// even when compiled on a 32 bit processor.
int16_t raw = (data[1] << 8) | data[0];
if (type_s) {
raw = raw << 3; // 9 bit resolution default
if (data[7] == 0×10) {
// “count remain” gives full 12 bit resolution
raw = (raw & 0xFFF0) + 12 – data[6];
}
}
else {
byte cfg = (data[4] & 0×60);
// at lower res, the low bits are undefined, so let’s zero them
if (cfg == 0×00) raw = raw & ~7; // 9 bit resolution, 93.75 ms
else if (cfg == 0×20) raw = raw & ~3; // 10 bit res, 187.5 ms
else if (cfg == 0×40) raw = raw & ~1; // 11 bit res, 375 ms
//// default is 12 bit resolution, 750 ms conversion time
}
celsius = (float)raw / 16.0;
fahrenheit = celsius * 1.8 + 32.0;
Serial.print(” Temperature = ”);
Serial.print(celsius);
Serial.print(” Celsius, ”);
Serial.print(fahrenheit);
Serial.println(” Fahrenheit”);
delta = celsius – lasttemp; //Create value to check how much temperature has changed
if (currentMillis – previousMillis > interval) { //If it has been 20 seconds, check to turn LED on
previousMillis = currentMillis;
if ((delta < 00.05) && (delta > 00.05)) { //If temperature hasn’t changed by +/ .05 turn led on.
digitalWrite(13, HIGH);
}
}
if (delta >= 00.1) { //If temperature has changed by more than .1 turn LED off
digitalWrite(13, LOW);
}
if (delta <= -00.1) {
digitalWrite(13, LOW); // If temperature has changed by more than -.1 turn LED off
}
lcd.setCursor(0, 0);
lcd.print(celsius);
lcd.print(” C ”);
lcd.setCursor(0, 1);
lcd.print(fahrenheit);
lcd.print(” F ”);
lasttemp = celsius;
}