D’oh! I wrote that post right before signing off my computer for a few hours. oops!
@Val123 has sorta the right idea, as far as if the stars were emitting “tracers” and seeing different patterns over time. However, I’m afraid I might have confused things with the link to the graph. In a binary star system, if the stars were emitting “tracers” of light as they moved, if you looked at them “face-on”, their paths would form too overlapping circles or ellipses. Try this website, changing the mass of the purple planet to ~150, and you have an idea of what that would look like.
If you looked at the system edge-on, you’d just see a line, with two bright “dots” moving back and forth along the line as they looked at eachother. As @Val123 and @gailcalled suggested, this is similar to taking a dinner plate or a CD and holding it flat, even with the plane of your eyes.
For a system that is somewhere between edge-on and face-on, we would simply see similar overlapping ellipses as in the face-on case, they would just be “squished” or flattened. Play with the simulation i linked to above, and try these initial inputs:
Body 1: 200 -90 0 -90 0
Body 2: 150 150 0 -80 40
Try to imagine, those could be more circular orbits, but because of an inclination angle, the appear to us to be elliptical.
The graph i showed is something different. That is a “light curve” for an edge-on binary system. It shows the total brightness of the whole system, as perceived by us, as the stars orbit eachother. It assumes that the stars are not of equal brightness. On the plateaus, from our perspective the stars are “next to” one another, so we see the full brightness from both of them. When the brighter star passes behind the dimmer star, we get the first dip in the graph, because we ONLY see the light from the dimmer star. The bright star emerges again, and we see the same brightness level as before, until the dim star passes behind the brighter star. Now we ONLY see the light from the brighter star, so there’s a dip again. Does that make more sense? The graph does NOT show position, it shows overall brightness over time.
Edge-on binary stars are very useful to astronomers. They are the only system where the inclination angle can be truly and surely known, because we can SEE the stars passing in front of one another. With systems that are inclined, we can only make an educated guess as to what the inclination angle is, or if the system is 100% face-on. When a system is edge-on, we can get true orbital velocities of the stars, which means we can get their masses, the radius of the orbit, etc. Unfortunately, as you can probably guess, edge-on or perfectly face-on binaries are rare. Random-inclination binaries are much more common. Luckily, more than ½ the stars in our galaxy seem to be in binary systems. Our sun is one of the odd-ball lonely stars. With 300 billion stars in the galaxy, at least half of them binaries, there’s some edge-on systems for us to study!